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Abstract. We extend Tulczyjew's geometrical formulation of skewsymmetric tensor gauge 
fields as connections on generalised principal fibre bundles to the category of supermani- 
folds. Given a smooth d-dimensional manifold M and a k-form field on it, we construct 
a suitable supersmooth generalised principal fibre bundle 9' over a (d, 2)-dimensional 
supermanifold A such that the BRS symmetries of the theory have a natural geometrical 
interpretation. 

1. Introduction 

The theory of electromagnetism can be generalised in two different directions. On 
the one hand, one can go from an abelian to a non-abelian gauge group, maintaining 
the tensorial character of the field and thus obtaining the Yang-Mills theories. On 
the other hand, it is possible to go from the vector potential one-form to a (k + 1)-form 
retaining the abelian character of the gauge group. The latter kind of field is receiving 
increased attention in several branches of theoretical physics: such fields are now 
involved in the U(1) problem and the confinement problem in QCD and they appear 
in supergravity (see e.g. Townsend 1981). 

This paper is a contribution to a program initiated by Bonora and Tonin (1981) 
and carried on in a series of papers by Bonora, Pasti, Tonin and Marchetti (Bonora 
et ul 1981a, b, c, Marchetti and Tonin 1981) aimed at giving a simple geometrical 
way of deriving all the auxiliary terms in the Lagrangian which are needed for the 
quantisation of gauge fields. This is possible for theories which admit two Becchi- 
Rouet-Stora symmetries (which we refer to as BRS and anti-ms or BRS (Curci and 
Ferrari 1976)), i.e. Yang-Mills and the theory of skewsymmetric gauge fields (differen- 
tial forms). Here we give a mathematically precise formulation, in terms of supermani- 
folds and (super) generalised principal fibre bundles, of the construction of the 
Lagrangian for (k + 1)-forms (Marchetti and Tonin 1981) which made use of the 
language of superfields. 

Let us sketch the general philosophy of our construction. Let M be a d-dimensional 
real manifold, A k ( M )  the bundle of k-forms over M and E k ( M )  the C"(M)-module 
of Cm-sections of A k ( M ) ;  we consider a field A E Ek+l(M) whose dynamics is given by 
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where F = dA. Invariance here refers to the well known ‘gauge’ transformation 

A + A  +dA hEEk(M). (1.2) 

For k = 0 this is Maxwell’s theory of electromagnetism, but for k # 0 it cannot be 
interpreted geometrically as the theory of a connection in a principal fibre bundle, as 
the gauge symmetry (1.2) would suggest. Tulczyjew (1979) has worked out a 
geometrical framework for the description of such theories, which he calls generalised 
principal fibre bundles. Roughly speaking, a ( k  + 1)-form A can be regarded as a 
connection in a bundle P which is locally isomorphic to A k ( M )  (in § 2 we will briefly 
repeat this construction over a general supermanifold A). For the sake of quantisation 
we need to supplement (1.1) with a number of gauge-fixing and ghost terms in such 
a way that the total Lagrangian exhibits BRS and BRS symmetries. In order to embody 
these properties into the geometry, we go over to a suitable (d ,  2)-dimensional 
supermanifold A and generalised principal fibre bundle 9 over A ;  the ( k  + 1)-form 
A describing a connection in P is carried over to a ( k  + 1)-(even) form d over “4 
describing a connebtion in 9, such that its curvature vanishes along the two new odd 
dimensions (see (4.1)). This allows us to identify the generators of translations along 
these odd dimensions as the BRS and BRS charges (Bonora and Tonin 1981a). All 
the auxiliary terms which are needed for quantisation can then be obtained in the 
Feynman gauge upon performing the superfield expansion of d in the expression 

and integrating over the odd variables. 
The Hodge operator used here was defined by Berezin (1979) (see also Napolitano 

and Sciuto (1981)). It makes use of a Riemannian structure which in the case of 
interest to us, when M = GM x Q1 x Q1, is given by Gg + 2i d8 Odg, g being a Rieman- 
nian structure in M, 8 and $ coordinates in the odd dimensions and G the Grassmann 
enlargement (see below, point (d)). 

We conclude this introduction by establishing what we mean by supermanifold, 
using the language of category theory (e.g. Lang 1972). There are at present several 
definitions of supermanifold being used in the mathematical and physical literature; 
some of them turn out to be equivalent to others, and some not. Since the subject 
seems to be still somewhat controversial, we will not adopt one particular definition, 
but rather require that the definition to be used satisfy some general properties, which 
we now list. 

(a) Given a fixed graded Grassmann algebra Q = QoOQ1, there exists a category 
of smooth Q -supermanifolds, analogous to the category of smooth real manifolds. 

(b) In the same way as one defines smooth vector bundles using manifolds, it is 
possible to define smooth super vector bundles using supermanifolds; in the same way 
that one defines functors T, T*, hk ( k  a 1) from the category of real manifolds to the 
category of real vector bundles which map a manifold to its tangent, cotangent and 
exterior bundles, it is possible to define analogous functors (still denoted T, T*, A k )  
for supermanifolds. 

(c) There exists a surjective functor B from the category of smooth Q-supermani- 
folds to the category of smooth real manifolds which associates to each ( m , n ) -  
dimensional ( m  ‘even’ and n ‘odd’ dimensional) Q-supermanifold an m-dimensional 
real manifold, to be called its ‘body’. 



Supermanifold description of the BRS symmetries 863 

(d) There exists an injective functor G from the category of smooth real manifolds 
to the category of smooth Q-supermanifolds which gives, in a sense, the 'simplest' 
Q-supermanifold having the original manifold as its body; we will refer to this as the 
'Grassmann enlargement'. If the manifold is m-dimensional, its Grassmann enlarge- 
ment will be (m, 0)-dimensional. 

(e) There exists a forgetful functor F from the category of smooth Q-supermani- 
folds to the category of smooth real manifolds (eventually Banach manifolds, if Q is 
infinite-dimensional, as we will assume); if dim Q = 2p, an (m, n)-dimensional super- 
manifold is mapped to a p(m + n)-dimensional real manifold. 

(f)  The functors B, G commute.with the functors T, T*, Ak.  
For definiteness one may bear in mind the definition of Rogers' supermanifold 

(Rogers 1980, Jadczyk and Pilch 1981); it is not known, however, how large the 
domain of definition of the functor is in this category. This problem will be studied 
in a separate paper, where we will also prove point (f)  in this context (Marchetti and 
Percacci 1981); for the time being, we will call G"-Man the subcategory of Rogers 
manifolds which admit a body (a Rogers supermanifold JU with atlas {(aA, $A)} has 
a body A? with atlas {(CA, @A)}  if there exists a unique surjective map q :  JU +A? such 
that ~ A = q ( % A )  and E O $ A = ~ A O ~ ;  if / :JU+N, B/  :BJU+BJV maps q ( x ) *  
q ( f  (x))).  The tangent bundle which we refer to in (b) is to be meant as the even 
tangent bundle defined by Jadczyk and Pilch (1981); the same holds for T* and ilk, 
e.g. T*JU = Mor(TA, A x Qo), in the category of Gm-vector bundles. The Grassmann 
enlargement? has been defined in this context in Bonora et a1 (1981~) .  It should be 
mentioned that the Madrid group has given a new definition of supermanifold by 
formalising properties (a), (c), (e) (Hoyos et a1 1981). Although property (e) will not 
be used explicitly in this paper, it is shared by several definitions of supermanifold 
(e.g. it holds for the Rogers supermanifold), and it seems at least desirable for physical 
applications. The reason for this is the following: in order to avoid well known 
nilpotency problems for the ghosts, one has to assume that the Grassmann algebra 
Q has to be infinite dimensional; thus applying the functor F we obtain an infinite- 
dimensional Banach manifold, and it is known that a proper geometrisation of the 
ghost fields does require infinite-dimensional manifolds (Leinaas and Olaussen 198 1). 

Categories: 
C"- Man smooth real manifolds 
G"-Man 
C m - V B  smooth real vector bundles 
G"- VB 

c"- GPB ( M )  
G " - G P B ~  (A) 
Functors: 
B:G"-Man+C"-Man body 
G:C"-Man+ G"-Man Grassmann enlargement 
T: C"-Man+ C"-vB tangent 
T:G"-Man+G"-vB tangent. 
We use throughout script characters for objects and morphisms in the G"- categories, 
and Roman characters for objects and morphisms in the C"-categories. A particular 

We conclude this section with some remarks concerning our notations. 

smooth Rogers Q-supermanifolds with body (Q fixed) 

smooth super vector bundles 
smooth generalised principal fibre bundles over M,  type k 
smooth generalised principal fibre bundles over A, type k. 

t In fact, for the Grassmann enlargement also there are problems when Q is infinite dimensional but these 
problems do not arise in the case of G" supermanifolds and so we will not worry about this here. 
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object or morphism in the C"-category arising from the application of the functor B 
will sometimes be denoted by a hat (e.g. BA =&, B/' =f), and similarly objects 
or morphisms in the G"-category arising from the application of the functor G will 
sometimes be denoted by a bar (e.g. GM =A?, Gf = 3 ). 

The functors B and G act on vector bundles in the following way: if 

(8, IT, A)  E G W - v ~ ,  B(8 ,  T ,  A) = (B8, BT, BA) 
and if 

(E, T ,  M )  E C"-VB, G(E,  T ,  M )  = (GE, GIT, GM).  

2. Generalised principal fibre bundles on a supermanifold 

Acting with Ak on a supermanifold A, we obtain the G"-vector bundles of k-forms 
Ak(A)=(Pk , ITk ,A) ,k  = O , l , .  . . . LetG"(A)=Go"(A)OG?(A)denotethegraded 
commutative algebra (which is also a graded Q-module) of G" functions from A to 
Q. G:(A) is the commutative algebra (which is also a Qo-module) of G" functions 
from Ju to Qo. Go"(A) can be identified through the graph relation with the set of 
all sections of A'(&), which we denote Eo(A); the set of all sections of A k ( A )  for 
k > 0 is a G; (A)- module denoted Ek (A). The group composition law in this module 
is the pointwise addition of forms; with respect to this, E k  (A) are infinite-dimensional 
abelian Lie groups, and as such they possess infinite-dimensional commutative Lie 
algebras over R, which we denote 8 k  (A). The distinction between Ek and 8 k  is however 
purely formal, since an element s of Ek(Jt )  is generated by an element (T of 8 k ( A )  

with s = U .  Tulczyjew (1979) defines a group action y : 9 X E k  (A) + 9' by 

Y k ( P ,  s )  = p  + s ( T k ( P ) ) .  (2.1) 

This action is effective but not free. We also define y ; : P k  + F k  by y f ( p )  = y k ( p ,  s). 
Let now c : I  + Ek (A)  be a C' curve with c (0) = s = (T and yccr)  be the flow induced 
on P k ;  we define the fundamental vector field W k ( a )  on Pk to be 

Notice that W k ( a )  belongs to the Go"(Pk)-module .T(Pkk) of Gm-sections of V k .  
Equation (2.2) defines a homomorphism W k :  sk(A)- ,  Y ( P k ) .  We now define the 
canonical k-form 6' E Ek (9 k ,  by 

(aklvl ,  * * * 3 vk)lp =(plTTk(vl), * .  9 9 TTk(vk))/.lr(p) (2.3) 
where ui E TpPk  ( i  = 1, . . . , k )  for k > 0, a n d a k  = pr2 for k = 0 (the canonical projection 
A o A  = A  xQo+Qo) and the canonical (k +l)-form w k  €Ek+1(sk) by 

(2.4) w = d a k .  

We summarise here the properties of the canonical forms, which generalise straightfor- 
wardly from the C" to the G" case: 

k 
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(2.8) 

(2.9) 
(2.10) 

If { y " }  are local coordinates on A and {y ", pal.,,ak} are local coordinates in Bk,  then 
locally we have 

' 8 k / ( y Q , p o ,  ak)=(l/k!)Pal,..ak dy"'A.. .Adyak. 

Next we define a generalised principal fibre bundle over A modelled on A k A  to be 
a triple (9, T,  A) where 9 is a G"-manifold with a group action y :  9 x El,(&) + 9 
such that (i) A is the factor of 9' by the equivalence relation induced by y, (ii) Vx E A 3 
a neighbourhood % of x and an A-isomorphism ~ : T - ' ( % ) + ( T ~ ) - ' ( % )  such that 
9 ( y ( p ,  s ) ) =  y k ( 9 ( p ) ,  s)Vs E E k ( & ) .  Inanalogyto(2.2)wecandefinethefundamental 
vector field W ( a )  generated by U on 9 and locally 

W ( a )  = Tq- ' (Wk(u) )  

and W may be regarded as a homomorphism 8 k ( & )  + .T(9). A(k + 1)-form a E 

Ek+l(g) will be called a connection form if it satisfies the following properties: 

(2.11) 

(2.12) 

The (k + 2)-form P = d a  will be called curvature and satisfies 

i w d  = 0 (2.13) 

P W ( U ) P  = 0.  (2.14) 

One may check that 

(2.15) 

Ys*P = P .  (2.16) 

y s a = a + s r * d s  * 

Let Q be a trivialisation of 91%; from (2.8), (2.9), (2.11), (2.12) there follows 
k i w ( u , ( a - 9 * w  ) = O  

z w c U ) ( a  - ~ * o ~ ) = o  

and therefore there exists d ~ E k + l ( u )  such that 

(2.17) 

(2.18) 

(2.19) k a - 9 * w  =IT*&. 

Similarly from (2.13), (2.14) there follows 

p = T * 9  

where 

9=M. 

If 9' is a different trivialisation of then 
Q*w k -Q'*Wk = d ( 9 * 6 k - 9 c p * 4 k )  

(2.20) 

(2.21) 
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Therefore d is transformed into 

d ' = d + d s .  (2.22) 

This transformation can be considered as a gauge transformation for the field d on 
A which locally looks like 

d ~ ~ . . . ~ k ( y )  dy"' A 9 * . A dyak = ( d ~ ~ . . . Q k ( Y ) + ~ ~ ~ ~ ~ ~ . . . " k ( y ) )  dy"'A * . * A  dy"'. 

Let G"-vB(A) (C"-VB(M)) denote the subcategory of G m - v ~  (C"-VB) of vector 
bundles over a fixed supermanifold A (manifold M ) .  By assumption (f) of § 1, the 
functor B maps the sequence of vector bundles A'&, A'&, A 2 A ,  . . . E G"- VB(A) onto 
the sequence of vector bundles A'&, A'&?, A2M, . . . E C"-VB(&?) where M = B A ,  
and similarly the functor G maps the sequence of vector bundles A'M, A'M, A2M, . . . E 
C"-VB(M) into the sequence of vector bundles A'& A'& A'&, . . . E G"-VB(&) 
where 2 = GM. In the rest of this section we will prove that B and G act in a similar 
way on generalised principal fibre bundles and that the action can also be extended 
to the connections. We start with the following proposition. 

Proposition 2.23. The functor B maps the canonical forms ak  E Ek(Pk)  and w k  E 

Ek+l (Pk)  into the canonical forms ek E E k ( p k )  and nk E & + l ( P k )  where p k  is the total 
space of Ak& and P k  is the total space of AkM.  

Remark. Here ak has to be regarded as a morphism of G"-manifolds Pk + AkPk 
and hence it makes sense to write Bak : the same holds for the other forms. 

Lemma 2.24. If y E Ek(A)  and U E Y(A), B(i,y) = ie&. 

Proof. Let P E A ;  then By:cp(p)-cp(yp), Bv:cp(p) -cp(~~)  and I'BJ3y:cp(p)* 
i,(,p,cp(yP). But i : A k A  XT&+Ak- 'A  is a morphism of G"-Man and hence 
i9(uR)cp(yp) = cp(iupyp) which is the image of p under B(i,y). 

Lemma 2-25, If ?E&(&), t' ET(&), (i) B d y = d B y E E k - l ( k )  and (ii) ~ 2 ~ 7  = 

2 B a Y  E E k  

Proof. It is easiest to prove this in local coordinates. If CL is a local coordinate system 
on a neighbourhood 6 2  CA, and A is ( m ,  n )  dimensional, let y", a = 1,. . . , m + n ,  
denote the coordinate functions on a: y" = pr,  0 I,$ where pr, denotes the projection 
on the ath factor of 0"'" = 0," OQ;. Now on functions ( k  = 0) df = T f and thus 
by assumption (f)  B df =dB f . In particular, on the coordinate functions B dy" = 
dBy " = d(E 0 y "); let us make the convention that a = p,  a = 1, . . . , m, label the even 
coordinates and a = m +a, a = 1, . . . , n, label the odd coordinates. Then 

B dy" = d?" B dy" = O  
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where we have called 9" = By" the real coordinates of Bu defined by (2.6). Then 

B dy =B((l /k!)dy, ,  ..., Ir / \ d y a l ~ .  . . hdyak)  

= ( l / k ! ) d B y F l , . , F k  A ~ ? " ~ A . .  , r \dgFk=dBy.  

Statement (ii) is a direct consequence of the formula 9, = d 0 i, + i ,  0 d on Ek(A) and 
lemma 2.24. 

Proof of proposition. In (2.3) p appears on the left as a point of Pk and on the right 
as a k-form on A at . r r k ( p ) .  Thus the application of B to it can be expressed either 
with q ( p )  E Pk = BPk or with Bp:  TA? x . . . X TA? + R, the meaning being obviously 
the same. Then applying B on both sides of (2.3) and using lemma 2.24 gives 

(BaklBul, * . . 9 B V k ) l d p )  

=B(akIu1, , V k ) l d P I  

= B ( P I T T k ( v l ) ,  * * .  9 ~ . r r k ( V k ) ) l d p )  

= (BplT7ik(Bu1), . * . , T7ik(BYk))lq(p). 
The statement for w k  is a trivial consequence of lemma 2.25. 0 

It would be desirable to define the categories of generalised principal fibre bundles 
(over real or supermanifolds) but this is actually impossible. For let U : 91 + P2 be a 
fibre preserving map: ~ 2 ( u ( p ) )  = /' (.rrl(p)) for p E PI and some function /' :AI  +A2; 

then one should impose y 2 ( u ( p ) ,  A(s)) = u ( y l ( p ,  s)), A being a homomorphism 
E k ( A l )  + E k ( A 2 ) .  But a natural homomorphism in general does not exist, because 
forms pull-back under the action of /' . Consequently, we must content ourselves 
with a more restricted definition. We define a category G"-GPB~(A) (resp C"- 
GPB~(M)) whose objects are the generalised principal fibre bundles over A E G"-Man 
modelled on A k A  (resp the generalised principal fibre bundles over M E C"-Man 
modelled on AkM)  and whose morphisms are fibre maps U : PI + 9 2  such that, with 
obvious notation, yi2' 0 U = U 0 y j ' ) ,  s E Ek(A) (resp s E Ek(M)) .  

We define the action of B on G"-GPB~(&) by 

B ( ~ P , ~ , A ) = ( B P ,  BT,BA)=:(@,+,&?). 

This is a generalised principal fibre bundle over &?=BA because if cp is a local 
trivialisation of 9, 4 = Bq is a local trivialisation of @ satisfying condition (ii) of the 
definition. Furthermore, if ( U I ,  f 1) and (u2 ,  /' 2 )  are morphisms PI + P2 and P2* P3, 
the following diagrams hold: 

.1 ='p 

I 
-6 

B h  

(2.26) 
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and hence 

(2.27) 

Proposition 2.28. B is a surjective functor for the category G"-GPB~ (A) to the category 
c"- G P B ~  (BA 1. 

This result extends also to generalised principal fibre bundles with connection, in 
the following sense. 

Proposition 2.29. If (9, I T ,  A)E G"-GPB~(A)  and a is a connection form in 9, Ba is 
a connection form in (B9 ,  BIT, B A ) .  If P is the curvature form of a,  BP is the curvature 
of Ba. 

Proof. If (T E % k ( A ) ,  p E 9 and c is as in (2.2), using (2.27) 

d d 
BW(a)l,m = B(-@, c(t))I,=o) = &BY(cp(P),  Bc( t ) )  = W(B&PI 

and thus BW((r) = W(Ba) .  Now applying B on both sides of (2.11), (2.12) and using 
lemmas 2.24, 2.25 the result follows at once. 

From propositions 2.23 and 2.29, it follows that in fi 
Ba -$*nk =&*A (2.30) 

BP = &*F (2.31) 

F = d A  (2.32) 

where A = B d ,  F = B 9 ,  and moreover a change of trivialisation (a 'super' gauge 
fransformation) cp + cp' of 91% gives rise to a change of trivialisation (gauge transforma- 
tion), $ + 8' of PIB% such that the transformation law for A is 

A' = A  +dBs, (2.33) 

s being the k-form appearing in (2.22). Thus the whole structure of the generalised 
principal fibre bundle over A projects upon a similar structure on it? 

We now turn to the functor G. The situation is completely analogous to that of 
B and therefore we only state the results, without proofs. 

Lemma 2.34. If y E E k ( M )  and U E .T(M) 
(i) G(i ,y)  = ~GSY 
(ii) G dy = dGy 
(iii) G(L&y) = ZGVGy. 



Supermanifold description of the BRS symmetries 869 

Proposition 2.35. The functor G maps the canonical forms Ok E E k ( p k )  and flk E 
Ek+l(pk)into thecanonicalforms9k ~ ~ ~ ( 8 ~ 1  andwk ~ ~ k + ~ ( g ' ) w h e r e ~ ~  isthe total 
space of AkM and g k  is the total space of AkJ = AkGM. 

The action of G can be defined on the category C"-GPB~(M) by 

G(P, T ,  M )  = (GP, GT, G M )  = ( 8 ,  +, &) 

and 

Proposition 2.36. G is a functor from the category C"-GPB~(M) to the category 
G"- G P B ~  (RI, 

The result extends also to generalised principal fibre bundles with connection, in 
the following sense. 

Proposition 2.37. If (P, T ,  M )  E C"-GPB~(M) and a is a connection form in P, Ga is 
a connection form in ( 8 ,  +, R). If is the curvature form of a ,  GP is the curvature 
form of Ca. 

From propositions 2.35 and 2.37 it follows that in 9 
Ga =+*d (+ = Gcp) (2.38) 

GP = +*9 (2.39) 

9 = d d  (2.40) 

where d = CA, 9 = GF, and moreover a change of trivialisation (a gauge transforma- 
tion) cp + cp' of PIu gives rise to a change of trivialisation (a 'super' gauge transformation) 
(p +(p'  on @ I G u  such that the transformation law for d is 

d ' = d + d G s  (2.41) 

if A' = A + ds. Thus the whole structure of the generalised principal fibre bundle over 
M can be lifted to a similar structure on A. 

3. Geometrical meaning of the BRS transformations 

In the previous section we have seen how we can describe the gauge symmetry of 
(k + 1)-forms on a supermanifold and how this is related to the gauge symmetry on 
the body manifold. It will be apparent in the following that the simple Grassmann 
enlargement of a gauge structure on M (an element of C"-GPB~(M) with connection) 
does not carry any information beyond the one already contained in its body, and 
hence is not enough to embody the BRS structure of the quantum theory; on the other 
hand, a general gauge structure on a supermanifold A such that M =BA (an element 
of G " - G P B ~ ( A )  with connection) may not exhibit the desired symmetries; thus the 
problem is to construct a suitable gauge structure on a suitable A which enjoys them. 
This is the content of the present section. The construction will be based on previous 
work by Marchetti and Tonin (1981), where it  was shown using superfield methods 
how to obtain the total Lagrangian and its BRS symmetries. Stated in the present 
language, this goes roughly as follows: from the d-dimensional real manifold M one 
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constructs a (d ,  2)-dimensional supermanifold & = GM x On'* with projections 
qo:&+GM, q1:&+Qov2 and given a field A EEk+*(M) one constructs a field 
d E E k + l ( & )  such that Bd = A  and 

9 = q$GF (3.1) 

which is the condition that allows us to identify the BRS and BRS transformations as 
translations along the two odd coordinates of 4. This is equivalent to 

d = q$GA + dA A E Ek (A). 

This leads to 

(3.2) k 
CY - P * W  = ~ * q $ G A + d r * h  =IT*&. 

Now, performing a gauge transformation (3.22) on & with s = -A and calling 6 the 
new trivialisation, we have 

a - ~ * w k = ~ * q $ G A = i r T T * ~ .  (3.3) 
This is the guiding principle of our construction. 

For the sake of simplifying the notation we will write in the following GM =A%, 
GP = 8, GIT = ii, Gy = r ASO. Let now M E  C"-Man and (P, IT ,  M )  E C"-GPB~(M). 
Then by proposition 2.36 (8, i i , J # )  E G"-GPB~(J#) .  We now define& =A% x Qn92 and 

8 = B X E k ( k )  9 = ( [ ( p ,  p k ) ] ,  ( p ,  p k ,  E B x 8 1ii( p )  = q o  0 7T ( p  k ) }  

(B ,  P k )  - ( P ' ,  p k ' )  e p '  = r(P, 9, 

(3.4) 

where [ 3 means equivalence classes with respect to the equivalence relation 

p k ' = y k ( p k ,  -4;s) (3.5) 

for some s E &(A%). We call v the canonical projection of B x pk  onto B. We also 
define  IT:^+& by 

(3.6) IT([@, p k ) l )  = +r ( p  k ) .  

Theorem 3.7. The triple (8, IT, &) is a generalised principal fibre bundle modelled 
on A ~ A .  

Proof. First we define the action y : B X E k  (A) + 8 by: 

Y ( P ,  g )  = [ ( P ,  Y k ( P k ,  811 (3.8) 
where p = [ (p ,  p k ) ]  E 8 and g E &(A). This is well defined, because if we replace 
( p , p k )  by ( p ' , p k ' )  as in ( 3 3 ,  then 

[ ( p , p k ' ) l = [ ( Y ( P A  Y k b k ,  g-40*S))1=[(B9 Y k @ k , g ) ) l .  

I T k o y g k = I T  , ITQyg=7T 

Since 

and & = 9 mod &(A). k 

Let q 5 :  PILr +Pklu  be a local trivialisation over U c M ;  then by proposition 
2.36, + = Gq5: + B k l ~ "  is also a local trivialisation; we now define 

+ This action can be written in the alternative form y i p ,  g )  = [ ( T i p ,  i * g ) ,  y k i p k ,  g - q ; i * g ) ) ]  where we have 
defined the canonical injection i:R-+A. The action of q;i* on a form is to annihilate its components 
along, and make it independent of, the odd dimensions. 
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cp:  r-'(Q) + (rk)- '(Q) where u = 40' (GU)  = GU x Q0*', in the following way: if 
P = [ ( P ,  P k ) 1 9  

c p ( p ) = q : $ ( P ) + P k  4 r k ) - ' b )  (3.9) 
which is well defined because + ( p )  = qo 0 r ( p  k ,  = x and the sum is in the fibre over 
x .  Again we have to check that this is independent of the freedom given by (3.5): 
writing p = [ ( p ' ,  p ''11, 

c p ( p )  = 40*$ ( P ' )  + p k '  = 40*$(7(P,S))  + Y k ( p k ,  -4:s) 

= 4 0 * 7 ' ( d P ) ,  S) + Y k ( p k ,  - 4 3 )  

=40*sC(B)+40*Sl,+pk-40*S/y = 4 0 * $ ( P ) + p k  

where y = r ( p )  = r ( p  k ,  and we have written 7 for the group action on hkd. Finally, 
we have to show that cp satisfies the compatibility condition with the group action; 
using (3 -8) 

c p ( Y ( P , g ) ) = 4 0 * c p c a ) + Y k ( P k ,  g ) = 4 0 * ( P ( P ) + P k  +g/, 

= Y k ( 4 0 * + ( P ) + P k ,  g)  = Y k ( c p ( P ) ,  g). [I1 

Suppose a is a connection form on P ;  by proposition 2.37, ci = G a  is a connection 
form on 8: we wish now to use ci to construct a connection form on 8. Let us define 
the projections p :  @ x Bk + @  and p k :  @ x P k  + B k ;  let U :  8 + 8 x P k  be a section of 
the map v, i.e. a choice of a representative couple ( p ,  p k )  for each element p E 8. 
Then we may define @ = p o u : P + @  and F~ = p k  0 u : 8 + 8 ~ ;  a change of section 
defined by an element of Ek(d) as in (3.5) will result in new maps b.'=F o u t ,  

(3.10) 

p k i -  k - p 0 U' which are related to the old ones by 
p- k k 

- Y - q l J s O P  * 
G ' = Yi 0 

The situation is summarised by the following diagram: 

n L  

9' 

M 

We now define 
cy = @ * c y  + $ * * k  

and we check that it is actually independent of the choice of U :  

G ' * E  + C L k ' * W k  ' f i *  0 7;ci +$* 0 ( v k  )** k 483 

= G * ( E  + ii* dS) + N  ' * ( w k  - r k *  dq:S) 
k = @ * E  +(+ 0 @)*  d F + p  ' * w k  - (qo 0 r 0 p k ) *  dJ 

=@.*E + / p o k  

where we have used relations (2.15), (2.10) and in the last step (3.11), 

(3.11) 

(3.12) 
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Theorem 3.13. a is a connection form in 8. 

Proof. Let U E T&P be represented by a curve c : I + S  with c(0) = p ,  U =dc/dtl,=o. 
Given a section a as above, we define E = f i  o c : I + 8  with E ( O ) = f i ( p ) = p  and 
c k  g 0 c : I  + Bk withck(0) = w k ( p )  = p '. These curves define vectors 6 = dE/dtl,=, E 
T&P and u k  = dck/dtl,=oc T&P clearly 

6 = T$(u)  U' = Tg*(u) .  (3.14) 

A different section U' would lead to new vectors 6' = Tfi'(u) and U k' = Tk k' (v )  and 

(6 ' ,  u k ' ) = ( T j + ( 6 ) ,  T y f i , a j ( ~ ~ ) ) .  (3.15) 

Since the couples of curves ( E ,  c k ,  and ( E ' ,  ck ' )  define the same curve c, the couples of 
vectors (6, u k )  and (fi', uk') define the same vector U. Thus U can be represented as 
equivalence classes of couples of vectors under the equivalence relation (C', U k ' )  - (D, U k ,  

iff (3.15) holds for some S. Then (3.12) and (3.14) give 

k 

(3.16) 

We now choose a in such a way that a o y ( p ,  t ) - ( p ,  y k ( p k ,  t ) ) ;  if U = W ( 7 ) ,  the 
fundamental vector field induced by T E $ k ( A )  through the action y, then Tfi ( W ( T ) )  = 0 
and T g k ( W ( 7 ) ) =  W k ( 7 ) ;  thus by (2.11) and (3.11) 

k i,a = ig-i + i p w  . 

iw(,)a = p  k *  ( i W k ( , p  k ) = p k * o r k * ~ = r r * 7 .  

If 7 = du, u E %&-I(&), then 

Notice that the proof has been made simple by the choice of section; the reader may 
convince himself that it is independent of the section e.g. choosinga so that a 0 y ( p ,  t )  = 
(T(p,  i*t), y k ( p k ,  t-qo*i*t)) (cf footnote to equation (3.8)). 

Having concluded the construction of our bundle with connection, we return to 
equation (3.1). Since 8 is a generalised principal bundle over At with connection a, 
there exists an PE &+*(A) such that 

/ 3=da=r r*P .  

On the other hand d a  = fi  * dG and since E is a connection in 8, there exists F E  
Ek+*(M) such that 

p = d6 = +*GF. 

Thus by (3.11) 

/3 = fi*+*GF = rr* 0 q$GF 

and hence our original condition, (3.1), is satisfied. This implies condition (3.2) and 
thus there is a gauge (denoted by a tilde) where (3.3) holds, i.e. 

2 = d - d A  

is completely independent of the odd coordinates. This corresponds to equation (20) 
of Marchetti and Tonin (1981); the reader may now go back to that work to follow 
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the procedure for constructing the total Lagrangian. We have provided that construc- 
tion with a rigorous geometrical background based on the extension of Tulczyjew's 
work to the category of supermanifolds. 

We conclude with two remarks. The first is that in the case k = 0 our construction 
coincides with that of Bonora et a1 (1981) for an abelian Yang-Mills field. In this 
case 9' = A  x Qo and there exists a subgroup of &(A), namely the group of constant 
functions, which is isomorphic to Qo and acts freely on 9'. Thus we may regard Bo 
as a (trivial) principal bundle over A having as structure group the additive group 
Qo€ GR. Given any generalised principal bundle B over A modelled on Po, the 
local trivialisations cp : PIu + Bolu are just the local trivialisations of B regarded as a 
principal Qo-bundle; a, which is now a one-form, satisfies the properties of a connection 
in a principal Qo-bundle. It remains to be shown that B as defined in (3.4) coincides 
for k = O  with the bundles space of Bonora er a1 (1981~) ;  in fact 9 ={[(p,x, a ) ] ,  
( p ,  x, U ) E  @ xA x Qol i i (p )  = qo(x)} and the equivalence relation is (3.5); in each 
equivalence class we may choose a = O  by performing a change of section (in the 
language of (3.11)) by ~ E E ~ ( A ? )  defined by i(qo(x)) = a Vx EA. Thus the effect of 
the equivalence relation is precisely to cancel the factor Qo and we remain with 
9 = { (p ,  x)  E 9 x A l i i ( p )  = qo(x)} which is the definition used in Bonora et a1 (1981~) .  
Notice that this simplification is impossible for k > 0. 

The second remark concerns the difference between the present case and the one 
of a Yang-Mills theory. There, it was sufficient to take as a fibre of 9 over A the 
Grassmann enlargement of the fibre of P over M ;  in the present case this is not 
enough due to the fact that our bundles are soldered to the base manifold (i.e. they 
consist of forms on A), and thus, enlarging the manifold (from A? to A), we must 
accordingly enlarge the group. Had we not done so, we would have arrived at a 
geometrically unnatural structure consisting of a bundle space 9 modelled on A k A  
but with a group action isomorphic to &(A?); condition (3.1) would then imply that 
the most general form of d is d=qo*GA+dqo*h with h €&(A?) and hence the 
gauge fixing term (1.3) would have been zero. One could then have tried with an d 
of the form ~ F l , . , F k + l  (x, 8,g) d x F 1  A .  . . A dxFkcl, i.e. retaining a functional dependence 
on the odd coordinates but banning components on d8 and d e ;  this even more hybrid 
construction would have led to a gauge fixing only for the original gauge freedom 
(1.2) and the theory would still not be quantisable. We see therefore that the 
enlargement of the structure group, which is geometrically necessary, leads automati- 
cally, in physical terms, to the fixing of all (primary and secondary) gauges. 

Acknowledgments 

We are grateful to A Rogers for some fruitful discussion and to M Quiros for kindly' 
making us aware of the recent achievements of the Madrid group. 

References 

Berezin F A 1979 Sou. J. Nucl. Phys.  30 605 
Bonora L and Tonin M 1981 Phys. Lett. B 63 91 
Bonora L, Pasti P and Tonin M 1981a Nuouo Cimento 64A 307 
- 1981b Preprint IFPD 46/81 
- 1981c Preprint IFPD 48/81 



a74 A de Pantz, P A  Marchetti and R Percacci 

Curci G and Ferrari R 1976 Phys. Lett. B 63 9 1  
Hoyos J, Quiros M, Mittelbrunn J R and de Urries F J 1981 Madrid preprinf, Generalized supermanifolds 
Jadczyk A and Pilch K 1981 Commun. Math. Phys. 78 373 
Lang S 1972 Differentiable Manifolds (Reading, MA: Addison-Wesley) 
Leinaas J L and Olaussen K 1981 Preprint CERN TH 3061 
Marchetti P A and Percacci R 1981 Preprint 3/81/EP 
Marchetti P A and Tonin M 1981 Nuovo Cimento 63A 459 
Napolitano E and Sciuto S 1981 Nuovo Cimenfo 64A 406 
Rogers A 1980 J. Math. Phys. 21 1352 
Townsend P K 1981 Preprint CERN TH3067 
Tulczyjew W M 1979 Rep. Math. Phys. 16 233 


